

The University of Jordan

Accreditation & Quality Assurance Center

COURSE Syllabus

1	Course title	Plant Physiology				
2	Course number	0334352				
3	Credit hours (theory, practical)	3 Credit Hour				
3	Contact hours (theory, practical)	6 Credit Hour				
4	Prerequisites/corequisites	Biology 0304101				
5	Program title	Bachelor of Biological Sciences				
6	Program code	0304				
7	Awarding institution	The University of Jordan				
8	Faculty	Faculty of Science				
9	Department	Department of Biological Sciences				
10	Level of course	Third Year				
11	Year of study and semester (s)	Second semester 2015/2016				
12	Final Qualification	B.Sc. in Biological Sciences				
13	Other department (s) involved in teaching the course	None				
14	Language of Instruction	English				
15	Date of production/revision	2015				

16. Course Coordinator:

Office numbers, office hours, phone numbers, and email addresses should be listed. Dr. Khaldoun J. Al-Hadid Office No.: 208 Office Hour: Sunday 09:00 a.m - 10:00 a.m., Monday: 9:30 a.m. - 10:30 a.m. Email address: kalhadid@ju.edu.jo

17. Other instructors:

Office numbers, office hours, phone numbers, and email addresses should be listed. None.

18. Course Description:

As stated in the approved study plan.

This course is a basic plant physiology class that coves the following areas: water -plant relationship, transpiration, nutrients uptake & plant nutrition, photosynthesis, plant hormones, phytochromes and plant response to stress. This course includes weekly two lectures and one laboratory session, which includes experiments dealing with the mentioned topics.

19. Course aims and outcomes:

A- Aims:

The students will gain the knowledge of applying plant physiology concepts to explain how plants work and contribute to ecological system and all forms of life.

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

1. Understand the relationship between water and plants.

2. Understand how plant uptake water and minerals.

3. Understand the basic concepts of plant nutrition.

3. Understand how photosynthesis steps happen.

5. Understand how phytoassimilates are translocated through plant parts.

6. Understand how plant growth happen and the role of cell wall in plant cell growth.

7. Understand the role of plant hormones in regulating plant activities & processes.

8. Understand the physiological response to environment.

9. Understand the effect of plant stress on plant and how plant response to stress.

3

20. Topic Outline and Schedule:	-		-		-
Торіс	Week	Instructor	Achieved ILOs	Evaluation Methods	Reference
 Plant cells and Water 1.1 Water has Unique Physical & Chemical Properties 1.2 The Thermal Properties of Water are Biologically Important 1.3 Water is The Universal Solvent 1.4 Property of Water Molecules results in Cohesion & Adhesion 1.8 Water Potential is the Sum of Its Component Potentials 	1	Dr. Khaldoun Al-Hadid	1	Exam	01-04
Whole Plant Water Relationship2.1 Transpiration is driven By Differencesin Vapor Pressure2.2 The Driving Force of Transpiration isDifferences in Vapor Pressure2.3 The Rate of Transpiration isInfluenced By Environmental Factors2.4 Water Conduction Occurs ViaTreachery Elements2.5 The Ascent of Xylem Sap is ExplainedBy Combining Xylem Transpiration WithThe Cohesive Forces of Water2.9 Radial Movement of Water ThroughThe Roots Involves Two PossiblePathways	2	Dr. Khaldoun Al-Hadid	1	Exam	19- 32 36
 Roots, Soils, and Nutrient Uptake 3.2 Nutrient Uptake 3.6 Cellular ion Uptake Processes are Interactive 3.7 Root Architecture Is Important to Maximize Ion Uptake 3.8 The Radial Path of Ion Movement Through Roots 	3	Dr. Khaldoun Al-Hadid	2	Exam	42-43 54-55
Plants and Inorganic Nutrients4.2 The Essential Nutrient Elements4.3 Beneficial Elements4.4 Nutrient Functions and DeficiencySymptoms4.5 Toxicity of Micronutrients	4	Dr. Khaldoun Al-Hadid	3	Exam	65-75

4

Energy Conservation in	I 5	5	Dr.	4	Exam	109-124
Photosynthesis: Harvesting	-)	Khaldoun	-	L'Ann	107-124
•			Al-Hadid			
Sunlight7.1 Leaves are photosynthetic Machines			Al-Haulu			
that Maximize the Absorption of Light						
7.2 Photosynthesis is an Oxidation-						
Reduction Process						
7.3 Photosynthetic Electron Transport						
7.4 Photophosphorylation is the Light-						
dependent Synthesis of ATP						
Energy Conservation in	6	5	Dr.	4	Exam	129-149
Photosynthesis:CO2 Assimilation	C)	Khaldoun	4	Exam	127-147
8.1 Stomatal Complex Controls Leaf Gas			Al-Hadid			
Exchange and Water Loss	,		Al-Haulu			
8.2 CO2 Enters the Leaf by Diffusion						
8.3 How Do Stomata Open and Close?						
8.4 External Stomatal Movement are also						
Controlled by External Environment						
Factors	u1					
8.5 The Photosynthetic Carbon Reduction	n					
(PCR) Cycle	.1					
8.6 The PCR Cycle is Highly Regulated						
8.7 Chloroplasts of C3 Plants also Exhibit	t					
Competing Carbon Oxidation Process						
Allocation, Translocation, and	7	7	Dr.	5	Exam	159-163
Partitioning of Photoassimilates	,		Khaldoun	5	Lixuin	200 200
9.5 Sieve Elements are Principal Cellular			Al-Hadid			
Constituents of the Phloem						
9.6 Direction of Translocation is						
Determined by Source-Sink Relationship						
9.7 Phloem Translocation Occurs by Mas	s					
Transfer						
9.8 Phloem Loading and Unloading						
Regulate Translocation and Partitioning						
Growth And Development of Cells	8	3	Dr.	6	Exam	289-298
17.1 Growth of Plant Cells is Complicate	d		Khaldoun			
by the Presence of a Cell Wall			Al-Hadid			
17.2 Cell Division						
17.3 Cell Walls and Cell Growth						
Hormones I: Auxins	9)	Dr.	7	Exam	305-307
18.1 The Hormone Concept in Plants			Khaldoun			
18.2 Auxin is Distributed Throughout the			Al-Hadid			311-313
Plant						
18.3 The Principal Auxin in Plants id						
Idole-3-Acetic Acid (IAA)						
18.8 Auxin is Involved in Virtually Every	7					
Stage of Plant Development						
Hormones II: Gibberellins	1	0	Dr.	7	Exam	323-324
19.1 There are a Large Number of			Khaldoun			
Gibberellins			Al-Hadid			330-332

10.2 There are Three Dringing! Sites for	1				
19.2 There are Three Principal Sites for Gibberellin Biosynthesis					
5					
19.8 Gibberellins Affect Many Aspects of					
Plant Growth and Development	11	D	7	E	341-350
Hormones III: Cytokinins are Adenine	11	Dr.	7	Exam	341-350
Derivatives		Khaldoun			
20.2 Cytokinins are Synthesized Primarily		Al-Hadid			
in the Root and Translocated in the					
Xylem					
20.3 Cytokinins are Required for Cell					
Proliferation		5	-		
Hormones IV: Abscisic Acid, Ethylene,	12	Dr.	7	Exam	355-369
and Brassinosteroids		Khaldoun			
21.1 Abscisic Acid		Al-Hadid			
21.2 Ethylene					
21.3 Brassinosteroids					
Photomorphogensis: Responding to	13	Dr.	8	Exam	373-378
Light		Khaldoun			250 292
22.1 Photomorphogenesis is Initiated by		Al-Hadid			379-383
Photoreceptors					
22.2 Phytochromes : Responding to Red					
and Far-Red Light					
22.4 Phytochrome and Cryptochrome					
Mediate Numerous Developmental					
Responses					
Tropisms and Nastic Movements	14	Dr.	8	Exam	392-401
:Orienting Plants in Space		Khaldoun			
23.1 Phototropism: Reaching for the Sun		Al-Hadid			
23.2 Gravitropism					
Measuring Time: Controlling	15	Dr.	8	Exam	414-421
Development by Photoperiod and		Khaldoun			
Endogenous Clocks		Al-Hadid			
24.1 Photoperiodism					
Responses of Plants to Environmental	16	Dr.	9	Exam	223-224
Stress		Khaldoun			
13.1 What is Plant Stress?		Al-Hadid			229-234
13.2 Plants Respond to Stress in Several					
Different Ways					
13.4 Water Stress is a Persistent Threat to					
Plant Survival					
13.5 Plants are Sensitive to Fluctuations in					
Temperature					

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following <u>teaching and learning methods</u>: Lectures and Discussions.

22. Evaluation Methods and Course Requirements:

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment</u> <u>methods and requirements</u>:

Written exams and Reports.

23. Course Policies:

A- Attendance policies:

Students are allowed to not attend seven lectures (15%) in the whole semester. In this case, students must attend every lab weekly. If a student does not attend a lab, then he/she has a maximum numbers of four lectures to skip.

B- Absences from exams and handing in assignments on time:

If a student does not attend an exam, he/she will get zero grade in that exam, unless, he/she shows a medical report that proves he/she could not attend the exam. In this case, a makeup exam will be offered to the student as soon as possible.

C- Health and safety procedures:

Students need to be aware of the basic procedure of laboratory safety. Part of the first lab in the first week of the semester is assigned to teach students these basic laboratory procedures.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

University regulations will be implemented for any cheating attempt, plagiarism and misbehavior.

E- Grading policy:

Evaluation	Grade
Midterm Lecture Exam	30
Midterm Lab Exam	10
Lab Reports	10
Final Lab Exam	15
Final Lecture Exam	35

F- Available university services that support achievement in the course:

The university provides lab materials and equipment. Moreover, the university provides personnel to help in exams.

24. Required equipment:

- 1. Centrifuge.
- 2. Water bath.
- 3. Incubators.
- 4. Spectrophotometer.
- 5. Compound Microscopes.

25. References:

A- Required book (s), assigned reading and audio-visuals:

Introduction to Plant Physiology, William G. Hopkins and Norman P. A. Huner, 4th Ed., 2009, John Wiley & Sons, Inc.

B- Recommended books, materials, and media:

Plant Physiology by F.Salisbury and C. Ross. 4th edition, 1992. Wads-Worth Publishing Company.

26. Additional information:

Name of Course Coordinator: ---Dr. Khaldoun Al-Hadid -Signature: ----- Date: ----Jun.08.2016-----

Head of curriculum committee/Department: ------ Signature: ------

Head of Department: ------ Signature: -----

Head of curriculum committee/Faculty: ------ Signature: ------

<u>Copy to:</u> Head of Department Assistant Dean for Quality Assurance Course File